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New real-time approaches for three-axis magnetometer sensor calibration are derived. These approaches rely on a
conversion of the magnetometer-body and geomagnetic-reference vectors into an attitude-independent observation
by using scalar checking. The goal of the full calibration problem involves the determination of the magnetometer
bias vector, scale factors, and nonorthogonality corrections. Although the actual solution to this full calibration
problem involves the minimization of a quartic loss function, the problem can be converted into a quadratic loss
function by a centering approximation. This leads to a simple batch linear least-squares solution, which is easily
converted into a sequential algorithm that can be executed in real time. Alternative real-time algorithms are also
developed based on both the extended Kalman filter and Unscented filter. With these real-time algorithms, a full
magnetometer calibration can now be performed on-orbit during typical spacecraft mission-mode operations.
The algorithms are tested using both simulated data of an Earth-pointing spacecraft and actual data from the
Transition Region and Coronal Explorer.

Introduction

T HREE-AXIS magnetometers (TAMs) are widely used for on-
board spacecraft operations. The basic concept behind these

devices is a fairly simple one, involving a simple magnetic sensor
coupled with an electronics unit to provide data in a digital format.
These sensors are useful because they provide both the direction and
magnitude of the magnetic field, and they are lightweight, reliable,
and have low-power requirements, with no moving parts.1 For these
reasons, most low-Earth orbiting spacecraft (below 1000 km) have
TAMs as part of their basic sensor package. It is well known that a
TAM can be used to determine a three-axis attitude when coupled
with gyros or a dynamic model in an extended Kalman filter (see
Ref. 2). Attitude-knowledge accuracies of 1–2 deg are common us-
ing this approach, which can be improved by using well-calibrated
sensors to achieve accuracies of 0.1–0.5 deg (Ref. 3). An exciting
new area of research involves using a TAM together with rate and
sun sensor measurements for orbit (position) estimation. Accura-
cies on the order of 10–100 km can be achieved, which is within
the position-knowledge requirements of many spacecraft.4,5 These
studies clearly show that an integrated magnetometer-based atti-
tude/orbit estimation system can provide the necessary knowledge
requirements of a spacecraft in a single package.

A paramount issue to the attitude accuracy obtained using mag-
netometer measurements is the precision of the onboard calibration.
The accuracy obtained using a TAM depends on a number of fac-
tors, including biases, scale factors, and nonorthogonality correc-
tions. Scale factors and nonorthogonality corrections occur because
the individual magnetometer axes are not orthonormal, typically
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due to thermal gradients within the magnetometer or to mechanical
stress from the spacecraft.6 Magnetometer calibration is often ac-
complished using batch methods, where an entire set of data must be
stored to determine the unknown parameters. This process is often
repeated many times during the lifetime of a spacecraft to ensure the
best possible precision obtained from magnetometer measurements.

If an attitude is known accurately, then the magnetometer cal-
ibration problem is easy to solve. However, this is generally not
the case. Fortunately, an attitude-independent scalar observation
can be obtained using the norms of the body-measurement and
geomagnetic-reference vectors. For the noise-free case, these norms
are identical because the attitude matrix preserves the length of a
vector. This process is also known as scalar checking.7 Unfortu-
nately, even for the simpler magnetometer-bias determination prob-
lem, the loss function to be minimized is quartic in nature. The most
common technique to overcome this difficulty has been proposed
by Gambhir, who applies a “centering” approximation to yield a
quadratic loss function that can be minimized using simple linear
least squares.8 Alonso and Shuster9 expand on Gambhir’s approach
by using a second step that employs the centered estimate as an
initial value to an iterative Gauss–Newton method. Their algorithm,
called TWOSTEP,9 has been shown to perform well when other
algorithms fail due to divergence problems. Furthermore, Alonso
and Shuster have extended this approach to perform a complete
calibration involving biases as well as scale factors and nonorthog-
onality corrections.6

One of the current goals for modern-day spacecraft is the ability
to perform onboard and autonomous calibrations in real time with-
out ground support. The TWOSTEP algorithm requires an iterative
process on a batch of data, and so it cannot be performed in real
time. The main objective of this paper is to present and compare
several sequential algorithms that are suitable for real-time appli-
cations. The centering approximation leads to a non-iterative least-
squares solution and has been shown to be nearly optimal for many
realistic cases.10 Because this approximation is linear, it can be con-
verted into a sequential process, which is the first real-time algo-
rithm shown in this paper. The second algorithm uses an extended
Kalman filter approach that is developed with commonly employed
estimation techniques. The third algorithm uses an Unscented filter
approach that offers very good results for robust calibration when the
initial conditions are poorly known. Simulated test cases and results
using real data obtained from the Transition Region and Coronal
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Explorer (TRACE) spacecraft show the validity of the new real-
time algorithms to perform onboard and autonomous calibrations.

Measurement Model
In this section, the TAM measurement model and attitude-

independent observation are summarized. More details on these
concepts may be found in Ref. 6. The magnetometer measurements
can be modeled as

Bk = (I3 × 3 + D)−1
(
OT AkHk + b + εk

)
, k = 1, 2, . . . , N

(1)

where Bk is the measurement of the magnetic field by the magne-
tometer at time tk , Hk is the corresponding value of the geomagnetic
field with respect to an Earth-fixed coordinate system, Ak is the
unknown attitude matrix of the magnetometer with respect to the
Earth-fixed coordinates, D is an unknown fully populated matrix
of scale factors (the diagonal elements) and non-orthogonality cor-
rections (the off-diagonal elements), O is an orthogonal matrix, b
is the bias vector, and εk is the measurement noise vector that is
assumed to be a zero-mean Gaussian process with covariance �k .
(See Ref. 6 for a discussion on the physical connotations of the O
matrix.) The matrix D can be assumed to be symmetric without loss
of generality. Also, In × n is an n × n identity matrix. The goal of the
full calibration problem is to estimate D and b. We first define the
following quantities:

θ ≡ [bT DT ]T (2a)

D ≡ [D11 D22 D33 D12 D13 D23]T (2b)

E ≡ 2D + D2 (2c)

c ≡ (I3 × 3 + D)b (2d)

Sk ≡ [
B2

1k
B2

2k
B2

3k
2B1k B2k 2B1k B3k 2B2k B3k

]
(2e)

E ≡ [E11 E22 E33 E12 E13 E23]T (2f)

An attitude-independent observation can be computed from

zk ≡ ‖Bk‖2 − ‖Hk‖2 = Lkθ
′ − ‖b(θ′)‖2 + vk (3)

where

Lk ≡ [
2BT

k −Sk

]
(4a)

θ′ ≡ [cT ET ]T (4b)

vk ≡ 2[(I3 × 3 + D)Bk − b]T εk − ‖εk‖2 (4c)

The effective measurement noise vk is approximately Gaussian with
mean denoted by µk and variance denoted by σ 2

k , each given by

µk ≡ E{vk} = −tr(�k) (5a)

σ 2
k ≡ E

{
v2

k

}− µ2
k = 4[(I3 × 3 + D)Bk − b]T �k[(I3 × 3 + D)Bk − b]

+ 2
(
tr�2

k

)
(5b)

�k = E
{
εkε

T
k

}
(5c)

where E{ } denotes expectation. Note that the measurement variance
in Eq. (5b) is a function of the unknown parameters. A conversion
from c and E to the sought variables b and D may be found in Ref. 6.

Sequential Centered Algorithm
The measurement model in Eq. (3) is clearly nonlinear in the

unknown parameter vector θ′. Therefore, linear least squares can-
not be applied directly. However, it is possible to determine an ap-
proximate linear solution by applying a centering approach. The
complete batch algorithm is shown in Ref. 6. Because this solution

is linear, then a sequential formulation can be derived that provides
real-time estimates. A formal derivation of this process may be
found in Ref. 11; we present only the final algorithm here. First, the
sequential formulas for the averaged quantities are given by

L̄k + 1 = [
1
/(

σ 2
k + 1 + σ̄ 2

k

)](
σ 2

k + 1 L̄k + σ̄ 2
k Lk + 1

)
(6a)

z̄k + 1 = [
1
/(

σ 2
k + 1 + σ̄ 2

k

)](
σ 2

k + 1 z̄k + σ̄ 2
k zk + 1

)
(6b)

µ̄k + 1 = [
1
/(

σ 2
k + 1 + σ̄ 2

k

)](
σ 2

k + 1µ̄k + σ̄ 2
k µk + 1

)
(6c)

where

1
/

σ̄ 2
k + 1 = 1

/
σ̄ 2

k + 1
/

σ 2
k + 1 (7)

Next, the following centered variables are defined:

L̃k + 1 ≡ Lk + 1 − L̄k + 1 (8a)

z̃k + 1 ≡ zk + 1 − z̄k + 1 (8b)

µ̃k + 1 ≡ µk + 1 − µ̄k + 1 (8c)

Finally, the sequential formulas for the optimal centered estimate
of θ′, denoted by θ̃′∗, and covariance of θ̃′∗, denoted by P̃θ ′θ ′ , are
given by

θ̃′∗
k + 1 = Kk θ̃

′∗
k + (

1
/

σ 2
k + 1

)
(z̃k + 1 − µ̃k + 1) P̃θ ′θ ′

k + 1
L̃T

k + 1 (9a)

P̃θ ′θ ′
k + 1

= Kk P̃θ ′θ ′
k

(9b)

Kk ≡ I9 × 9 − P̃θ ′θ ′
k
L̃T

k + 1

(
L̃k + 1 P̃θ ′θ ′

k
L̃T

k + 1 + σ 2
k + 1

)−1

L̃k + 1 (9c)

Note that only an inverse of a scalar quantity is required in the
sequential process. The sequential process can be initialized using
a small batch of data. A conversion from P̃θ ′θ ′ to the covariance of
the parameters b and D may be found in Ref. 6. Also, an approach
for determining σ 2

k + 1 involves using the earlier estimate in Eq. (5b).

Kalman Filter Formulation
In this section, an extended Kalman filter (EKF) is derived to

determine the calibration parameters in real time. An advantage of
the EKF formulation over the sequential centered approach is that b
and D can be computed directly without a conversion from c and E.
A summary of the EKF equations may be found in Ref. 12. Because
the vector θ in Eq. (2a) is constant, then the state model is given
by ˙̂x(t) = 0, where x̂ ≡ θ∗, which is used to denote the optimal
estimate of θ. The measurement model is given by zk = hk(xk)+vk ,
where

hk(xk) ≡ −BT
k

(
2Dk + D2

k

)
Bk +2BT

k (I3 × 3 + Dk)bk −‖bk‖2 (10)

Because no process noise appears in the state model, then the up-
dated quantities (state and covariance) are given by their respective
propagated quantities. The EKF equations then reduce down to

x̂k + 1 = x̂k + Kk[zk + 1 − hk + 1(x̂k)] (11a)

Pk + 1 = [I9 × 9 − Kk Hk + 1(x̂k)]Pk (11b)

Kk = Pk H T
k + 1(x̂k)

[
Hk + 1(x̂k)Pk H T

k + 1(x̂k) + σ 2
k + 1(x̂k)

]−1
(11c)

where P ≡ Pθθ , which is the covariance of the estimated parameters
for b and D. The state dependence of the measurement variance
is shown through Eq. (5b). The 1 × 9 matrix H(x) is the partial
derivative of h(x) with respect to x. This quantity is given by

H(x) =
[

2BT (I3 × 3 + D) − 2bT − S
∂E
∂D

+ 2J

]
(12)
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where S is defined in Eq. (2e) and

∂E
∂D

=






2(1 + D11) 0 0 2D12 2D13 0

0 2(1 + D22) 0 2D12 0 2D23

0 0 2(1 + D33) 0 2D13 2D23

D12 D12 0 2 + D11 + D22 D23 D13

D13 0 D13 D23 2 + D11 + D33 D12

0 D23 D23 D13 D12 2 + D22 + D33






(13a)

J ≡ [B1b1 B2b2 B3b3 B1b2 + B2b1 B1b3 + B3b1 B2b3 + B3b2] (13b)

The sensitivity matrix H(x̂) in the EKF evaluates H(x) at its current
estimate, and the notations hk + 1(x̂k), Hk + 1(x̂k) and σ 2

k + 1(x̂k) denote
an evaluation at the k + 1 time-step measurement using Bk + 1 and
at the k time-step estimate using x̂k .

Unscented Filter Formulation
In this section, a new approach, developed by Julier et al.13 is

discussed as an alternative to the EKF. This approach, which they
called the Unscented filter (UF), works on the premise that with
a fixed number of parameters it should be easier to approximate
a Gaussian distribution than to approximate an arbitrary nonlinear
function. The UF uses a different propagation than the form given
by the standard EKF. Given an n × n covariance matrix P , a set
of order n points can be generated from the columns (or rows) of
the matrices ±√

(n P). The set of points is zero mean, but if the
distribution has mean µ, then simply adding µ to each of the points
yields a symmetric set of 2n points having the desired mean and
covariance. Because to the symmetric nature of this set, its odd
central moments are zero, and so its first three moments are the
same as the original Gaussian distribution. (See Ref. 14 for more
details.)

The implementation of the UF for real-time magnetometer cali-
bration is straightforward. First, the following set of sigma points
are computed from P ≡ Pθθ :

σk ← 2n columns from ± γ
√

Pk (14a)

χk(0) = x̂k (14b)

χk(i) = σk(i) + x̂k, i = 1, 2, . . . , 2n (14c)

The parameter γ is given by γ = √
(n + λ), where the composite

scaling parameter λ is given by λ = α2(n + κ) − n. The constant α
determines the spread of the sigma points and is usually set to a
small positive value, for example, 1 × 10−4 ≤ α ≤ 1 (Ref. 14). Also,
the parameter κ is usually given by κ = 3 − n. Efficient methods to
compute the matrix square root can be found by using the Cholesky
decomposition (see Ref. 15). The following weights are now de-
fined:

W mean
0 = λ/(n + λ) (15a)

W cov
0 = λ/(n + λ) + (1 − α2 + β) (15b)

W mean
i = W cov

i = 1/2(n + λ), i = 1, 2, . . . , 2n (15c)

where β is used to incorporate prior knowledge of the distribution.
Because the state model estimate is given by ˙̂x(t) = 0, then the

propagated values for the state and covariance are given by their
respective updated values, which significantly reduces the compu-
tational requirements in the UF. Hence, the only essential difference
between the EKF and UF formulations is in the computation of the
innovations covariance, where the EKF uses a first-order expansion
to compute this quantity, whereas the UF uses a nonlinear transfor-
mation to compute this quantity. For the TAM calibration algorithm
using the UF, the state estimate is calculated by

x̂k + 1 = x̂k + Kk(zk + 1 − ẑk) (16)

where ẑk is the mean observation, given by

ẑk =
2n∑

i = 0

W mean
i hk + 1[χk(i)] (17)

where hk + 1[χk(i)] is defined in Eq. (10). Note that hk + 1[χk(i)]
denotes an evaluation at the k + 1 time-step measurement using
Bk + 1 and at the k time-step sigma point using χk(i). The gain Kk

is computed by

Kk = Pxz
k

[
Pzz

k + σ 2
k + 1(x̂k)

]−1
(18)

where Pxz
k is the cross-correlation matrix between x̂k and ẑk given

by

Pxz
k =

2n∑

i = 0

W cov
i

{
χx

k (i) − x̂k

}{hk + 1[χk(i)] − ẑk}T (19)

and Pzz
k is the output covariance given by

Pzz
k =

2n∑

i = 0

W cov
i {hk + 1[χk(i)] − ẑk}{hk + 1[χk(i)] − ẑk}T (20)

Finally, the propagated covariance is given by

Pk + 1 = Pk − Kk

[
Pzz

k + σ 2
k + 1(x̂k)

]
K T

k (21)

New sigma points can now be calculated using Pk + 1 for the sequen-
tial UF process.

Another approach for the UF uses the measurement noise model
of Eq. (3) with an augmented vector given by the state and ε in
Eq. (4c). Therefore, a decomposition of a 12 × 12 matrix is now re-
quired. In the strictest sense, this approach is more optimal than the
first approach because the effect of the nonlinear-appearing mea-
surement noise is directly used in the UF. However, the computa-
tional requirements are vastly increased due to the decomposition
of a higher dimensional augmented matrix. Also, from numerous
simulation trials, no apparent advantages to using the augmented
approach in the UF is seen. More details on this UF formulation for
magnetometer calibration may be found in Ref. 16.

Simulated and Real Data Results
In this section, results of the TWOSTEP, sequential centered,

EKF, and UF formulations are shown using both simulated and real
data. The simulated spacecraft is modeled after the Tropical Rainfall
Measurement Mission spacecraft. This is an Earth-pointing space-
craft (rotating about its y axis) in low Earth orbit (currently near
circular at 402 km), with an inclination of 35 deg (Ref. 17). The
geomagnetic field is simulated using a 10th-order International Ge-
omagnetic Reference Field model.18 The magnetometer-body and
geomagnetic-reference vectors for the simulated runs each have a
magnitude of about 500 mG. The measurement noise is assumed to
be white and Gaussian, and the covariance is taken to be isotropic
with a standard deviation of 0.5 mG. The measurements are sam-
pled every 10 s over an 8-h span. The true values for the bias b and
elements of the D matrix are shown in Table 1. Large values for
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Table 1 Results using simulated magnetic field data with white noise

Parameter Truth TWOSTEP Centered EKF UF

b1 50 mG 49.9828 ± 0.4445 49.9720 ± 0.4717 49.3909 ± 5.4206 49.9044 ± 0.4784
b2 30 mG 29.8409 ± 0.5253 30.1566 ± 6.5670 32.8364 ± 9.7200 29.7297 ± 0.5723
b3 60 mG 59.9721 ± 0.4642 59.9552 ± 0.6270 55.8104 ± 10.2291 59.9166 ± 0.4987
D11 0.05 0.0500 ± 0.0002 0.0500 ± 0.0002 0.0490 ± 0.0011 0.0499 ± 0.0003
D22 0.10 0.0994 ± 0.0020 0.1001 ± 0.0149 0.1184 ± 0.0478 0.0991 ± 0.0022
D33 0.05 0.0500 ± 0.0003 0.0500 ± 0.0003 0.0490 ± 0.0013 0.0499 ± 0.0003
D12 0.05 0.0499 ± 0.0010 0.0499 ± 0.0010 0.0489 ± 0.0128 0.0498 ± 0.0011
D13 0.05 0.0499 ± 0.0002 0.0499 ± 0.0002 0.0499 ± 0.0006 0.0500 ± 0.0002
D23 0.05 0.0499 ± 0.0010 0.0499 ± 0.0012 0.0410 ± 0.0224 0.0498 ± 0.0012

Fig. 1 EKF errors and 3σ bounds for b3 with white noise.

the biases are used to test the robustness of the sequential centered,
EKF, and UF algorithms.

There were 1000 runs executed, which provide a Monte Carlo–
type simulation. Shown in Table 1 are the averaged batch solu-
tions given by the TWOSTEP and centered algorithms, each with
their computed 3σ bounds. All comparisons are made with respect
to TWOSTEP. The centered algorithm does a fairly good job at
estimating all parameters, with the exception of b2. This parameter
corresponds to the least observable variable, which results in a wide
variation from the averaged value.

The EKF and UF are both executed at time t = 0 using initial
conditions of zeros for all states. The initial covariance matrix is
diagonal, given by

P0 =
[

500I3 × 3 03 × 6

06 × 3 0.001I6 × 6

]
(22)

This assumes a 3σ bound on the initial bias estimates to be about
70 mG and a 3σ bound on the initial estimates for the elements of
the D matrix to be about 0.1. The parameters used in the UF are
α = 0.1, β = 300, κ = 3 − n, and n = 9. The EKF and UF solutions
at the final time are shown in Table 1. The EKF does not converge
to the correct solution for many of the parameters, whereas the UF
gave results that are just as good as the TWOSTEP solutions. Also,
the 3σ bounds for the UF are much smaller than for the EKF and
centered algorithm. Even though the mean values of the centered
algorithm are slightly better than the UF results, it is important to
note the ± values are more important because they represent the
variability over the 1000 Monte-Carlo runs.

Figures 1 and 2 show the EKF and UF errors and 3σ bounds for
the parameter b3 for a typical case. The EKF does not converge to the
correct solution during the 8-h simulated run. For this problem, the
first-order approximation in the EKF does not adequately capture
the large initial errors. The biggest concern with the EKF solutions
is the confidence of the results dictated by the 3σ bounds, with b3

Fig. 2 UF errors and 3σ bounds for b3 with white noise.

Fig. 3 EKF and UF 3σ bounds for b3 with white noise.

shown in Fig. 3. In fact, if the truth is not known a priori and we only
had the covariance to assess filter performance, Fig. 3 would indicate
that the EKF is performing better than the UF. This can certainly
provide some misleading results. However, unlike the EKF, the 3σ
bounds computed from the 1000 runs associated with the UF are
nearly identical to the 3σ bounds computed from the UF covariance
for all of the parameters. (The final value shown in Fig. 3 is 0.5042,
which closely matches the numerically obtained value of 0.4987 in
Table 1.) This indicates that the UF is performing in a more optimal
manner than the EKF. However, the UF algorithm comes with a
computational cost, mainly due to the covariance decomposition.
Our experience has shown that the UF algorithm is about two times
slower than the EKF algorithm. Still, the performance enhancements
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Table 2 Results using simulated magnetic field data with colored noise

Parameter Truth TWOSTEP Centered EKF UF

b1 50 mG 49.9932 ± 2.0823 49.9924 ± 2.2267 49.1063 ± 3.2992 49.9184 ± 2.2511
b2 30 mG 29.9046 ± 2.7712 29.8880 ± 33.5958 31.8155 ± 6.8599 29.7986 ± 3.0082
b3 60 mG 59.9756 ± 2.1223 59.9748 ± 2.8451 57.4531 ± 3.7594 59.9080 ± 2.2783
D11 0.05 0.0502 ± 0.0010 0.0502 ± 0.0015 0.0489 ± 0.0015 0.0499 ± 0.0014
D22 0.10 0.0997 ± 0.0105 0.1002 ± 0.0747 0.1127 ± 0.0301 0.0994 ± 0.0116
D33 0.05 0.0501 ± 0.0010 0.0503 ± 0.0026 0.0491 ± 0.0015 0.0499 ± 0.0014
D12 0.05 0.0500 ± 0.0047 0.0499 ± 0.0051 0.0481 ± 0.0080 0.0498 ± 0.0052
D13 0.05 0.0498 ± 0.0009 0.0498 ± 0.0016 0.0499 ± 0.0007 0.0500 ± 0.0006
D23 0.05 0.0499 ± 0.0047 0.0498 ± 0.0059 0.0445 ± 0.0082 0.0498 ± 0.0052

Fig. 4 EKF and UF estimates for b3 with colored noise.

of the UF over the EKF may outweigh the increased computational
costs.

The robustness of the real-time algorithms is now tested by adding
colored noise to the measurements, which more closely models the
actual geomagnetic field errors. This noise is modeled using the
colored noise model shown in Ref. 9. The initial conditions and
covariances are the same as the earlier simulation. Shown in Table
2 are the averaged batch solutions given by the TWOSTEP, sequen-
tial centered, EKF, and UF algorithms, each with their 3σ bounds
obtained. Larger deviations are present for all of the algorithms due
to the colored-noise process. Also note that the actual errors are
outside the bounds computed from the covariance of all of the esti-
mators based on the now incorrect assumptions of the measurement
noise.9 As in the white-noise case, the sequential centered algorithm
has a wide of variation in the b2 parameter. A surprising outcome
is given for the EKF algorithm because it is now performing better
with the colored-noise model, in contrast to the results of the pre-
ceding simulation using white-noise errors only. This may be due
to an increased observability from the artificial “motion” induced
by the colored noise. Figure 4 shows the convergence of b3 for both
the EKF and UF. Even though the EKF estimates converge to nearly
the same value as the UF estimates, the UF converges near the true
value of 60 mG much faster than the EKF. Similar results are seen
in the other parameters as well. Both simulation results, one using
white-noise errors only and the other using colored-noise errors,
indicate that the UF provides the most robust real-time algorithm in
terms of both overall accuracy and convergence properties.

Next, results using real data from the TRACE spacecraft are
shown. This is an sun-synchronous spacecraft in low Earth orbit
(currently at about 600 km). The data collected for the spacecraft
are given during an inertial pointing mode. The errors associated
with the geomagnetic field model are typically spacially correlated
and may be non-Gaussian in nature (see Ref. 19). This violates
the assumptions for all of the estimators shown in this paper. We
still assume that the measurement noise is white and Gaussian, but

Fig. 5 EKF bias estimates using real TRACE data.

the standard deviation is now increased to a value of 3 mG, which
bounds the errors in a practical sense. The measurements are sam-
pled every 3 s over a 6-h span.

The EKF and UF are both executed at time t = 0 using initial
conditions of zeros for all states. The initial covariance matrix is
diagonal, given by

P0 =
[

10I3 × 3 03 × 3

06 × 3 0.001I6 × 6

]
(23)

This assumes a 3σ bound on the initial bias estimates to be about
10 mG, and a 3σ bound on the initial estimates for the elements
of the D matrix to be about 0.1. The parameters used in the UF
are α = 0.1, β = 300, κ = 3 − n, and n = 9. For the real data, the
solutions obtained using TWOSTEP and the EKF and UF algorithms
at the final time are nearly identical. This is most likely due to the
well-behaved nature of the data, that is, the calibration errors are
small. Also, the convergence rate and 3σ bounds of the EKF and
UF are nearly identical. However, the sequential centered algorithm
gave slightly different results. The centered algorithm final results
are given by

b∗ = [1.4007 −8.7350 −3.7927]T (24a)

D∗ = [0.0086 0.0437 0.0065 0.0006 0.0035 −0.0120]T

(24b)

The TWOSTEP, EKF, and UF final results are given by

b∗ = [1.6056 −8.4140 −4.6123]T (25a)

D∗ = [0.0123 0.0181 0.0040 −0.0005 0.0038 −0.0019]T

(25b)

Figure 5 shows EKF estimates for the bias vector b. Figure 6 shows
the 3σ bounds for the bias estimates. Note that the bias estimates
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Fig. 6 EKF 3σ bounds using real TRACE data.

Fig. 7 Norm residual using real TRACE data.

with the larger 3σ bounds have greater variability, which is due to the
relative observability between parameters; b2 is the least observable
parameter in this case. Similar results are obtained for the D matrix
parameters.

An investigation of the residuals between the norm of the esti-
mated vector, using the calibrated parameters and the geomagnetic-
reference vector is useful to check the consistency of the results.
These residuals are shown in Fig. 7. A spectrum analysis shows the
presence of sinusoidal motions with periods equivalent to the orbital
period (≈90 min) and higher-order harmonics. (See Ref. 19 for a
model of this process.) The mean value for the sequential centered
residuals is 0.60 mG, whereas the mean value for the EKF and UF
residuals is only 0.02 mG. Also, the magnitudes of the EKF and UF
residuals are smaller than the centered residuals.

Conclusions
Three real-time algorithms were developed for the calibration of

TAMs. The sequential centered algorithm was derived from a linear
least-squares approach based on a centering approximation. The
other algorithms were derived using the EKF and UF. Simulated
Monte Carlo test cases showed that the UF gave accurate results
with the least amount of variation compared to the other real-time
algorithms and is very robust to realistic nonwhite noise errors. Re-
sults using real data indicated that the residuals from the EKF and UF

algorithms have mean closer to zero and have smaller magnitudes
than the residuals from the sequential centered algorithm. Taken
together, the simulation and real data results indicate that the UF
provided the most robust real-time algorithm in terms of both over-
all accuracy and convergence properties. Therefore, this algorithm
is recommended for actual implementation when computational re-
quirements are not burdensome.
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